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In this paper, the chaotic attitude motion of dissipative satellites under small perturbation
torques is investigated by using the Deprit's canonical variables in the standard
Hamiltonian form. Melnikov's integral is used to predict the transversal intersections of the
stable and unstable manifolds for the satellites in perturbation. The theoretical criterion of
chaotic attitude motion of the perturbed satellites will be derived from the Melnikov
integral. Two models of satellites are studied. The "rst model is a quasi-rigid, energy-
dissipating satellite subject to the time-periodic, non-Hamiltonian perturbation torques.
The second model is a gyrostat satellite under small perturbation torques. It will
be shown that, in terms of Deprit's variables, the equations of the attitude motion
of the satellites can be easily transformed into the Hamiltonian form which is suitable for
the application of Melnikov's method to some cases of complex, small perturbation
torques. ( 2000 Academic Press
1. INTRODUCTION

The research on the dissipative motion of a rigid body under small perturbation torques is
often found to have to do with the motion of satellites or natural celestial bodies. The earlier
research about the dynamics of the gyrostat could be traced back to the end of the last
century [1]. Volterra solved analytically the ordinary di!erential equations describing the
attitude motion of the gyrostat with wheels of constant angular momentum under no
external torques and he analysed the stability of the steady solution of its attitude.
Rumyantsev [2] reviewed the motion stability of rigid bodies with #uid-"lled cavities based
on Lyapunov's methods. Pure rigid bodies are special cases of liquid-"lled bodies. The
Lyapunov}Rumyantsev theorem is widely utilized in the design of arti"cial satellites and
the liquid-"lled projectiles. Wittenburg [3] investigated the polhode curves on the inertia
ellipsoid of the base body for di!erent rotor speeds. Recently, the chaotic dynamics has
attracted many scientists. The main theoretical approach used to study the chaotic
dynamics of a non-linear system is Melnikov's integral method (see e.g. Chen and Leung
[4]). Melnikov [5] proved that a transverse heteroclinic (homoclinic) orbit occurred in the
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PoincareH map of the perturbed system by measuring &&the distance'' between the stable and
unstable manifolds associated with the saddle points. Holmes and Marsden [6] employed
the Kolmogorov}Arnold}Moser (KAM) theory and a vectorial version of Melnikov's
method to address the general question of perturbations of integrable multidimensional
Hamiltonian systems with at least three degrees of freedom (d.o.f.). Holmes and Marsden
[7] studied the Smale horseshoes and the Arnold di!usion for Hamiltonian systems on Lie
groups. They established the existence of Smale horseshoes and the Arnold di!usion for
some nearly integrable Hamiltonian systems associated with Lie groups. The presence of
horseshoes in the motion of a nearly symmetric heavy top implied that the dynamics was
complex, and that the dynamics had periodic orbits of arbitrary high multiple periods
embedded in an invariant cantor set, and that the dynamical system admitted no additional
analytic integrals. They developed Melnikov's theory when the phase space was a product
of the dual of a Lie algebra and a set of action angles. Tong et al. [8] introduced Deprit's
canonical variables to establish the Hamiltonian structure of the attitude motion of he
perturbed asymmetrical gyrostat in the gravitational "eld. They derived the Hamiltonian
equations which were readily suitable for the application of Melnikov's integral generalized
by Holmes and Marsden for a two d.o.f. Hamiltonian system with S1 symmetry. By using
a version of Melnikov integral extended by Holmes and Marsden [9], Tong and Tabarrok
[10, 11] showed that the attitude motion of the asymmetric gyrostat in the gravitational
"eld was chaotic in the sense of Smale's horseshoes. Tong and Tabarrok [11] revealed the
analogy between the motion of self-excited rigid bodies and slowly varying oscillators by
using Deprit's canonical variables. They investigated the chaotic attitude motion of
self-excited rigid bodies subjected to small perturbation torques by utilizing the version of
the Melnikov method developed by Wiggins and Shaw [12] for the case of slowly varying
oscillators. They found out the existence of transversal intersections of heteroclinic orbits
for certain parameter domains. Gray et al. [13] researched into the chaotic dynamics of an
attitude transition manoeuvre of a torque-free rigid body in going from minor-axis spin to
major-axis spin under the in#uence of small damping by using Melnikov's method. Their
model was a Hamiltonian system perturbed by a non-Hamiltonian perturbation in the form
of oscillations of sub-bodies and damping in the satellite. They found that the chaotic
motion was due to the formation of Smale's horseshoes. Gray et al. [14] studied the
analytical criterion for chaotic dynamics in #exible satellites with non-linear controller
damping. Gray et al. [13, 14] applied a spherical co-ordinate transformation involving very
complex calculations via Mathematica [15]. Their analytic criterion gave a useful design
tool to spacecraft engineers concerned with the avoidance of the potentially problematic
chaotic dynamics. Or [16] investigated the chaotic motion of a dual-spin body. He
developed the mathematical equations of chaotic motions of the dual-spin body and
derived the Melnikov function using the residue theory. Or obtained the conditions for the
existence of transverse homoclinic points and discussed the bifurcation to the Smale's
horseshoes.

In this paper, the Melnikov integral is employed to investigate the non-linear attitude
motion of the satellites under small perturbation torques. The Euler equations of the
attitude motion are transformed into the standard Hamiltonian form in terms of Deprit's
canonical variables. For the case of a quasi-rigid satellite model subject to small
time-periodic, non-Hamiltonian perturbations, the Hamiltonian equations obtained are
readily suitable for the application of Melnikov's method developed by Wiggins and
Shaw [12]. Reference [13] studied an attitude transition manoeuvre of a quasi-rigid satellite
in going from minor-axis spin to a major-axis spin under the in#uence of small
damping and non-Hamiltonian, time-periodic perturbations. The paper includes the
studies in references [11, 13] as special cases. The analytical criterion of chaotic motions of



Figure 1. The con"guration of a gyrostat rotating about the center of mass O.
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the perturbed satellites under small perturbation torques is also obtained by using
Melnikov's integral.

2. THE MATHEMATICAL FORMULATION IN TERMS OF DEPRINT'S VARIABLE

Equations of attitude dynamics of satellites can be derived from Euler's moment
equations. The system consists of a rigid body with rotating elements inside the satellite.
The rotating elements are known as &&momentum exchange devices''. The satellite is
assumed to rotate about the centre of mass under the action of external disturbance torques.
The moment of momentum of the system is made up of the moment of momentum of the
gyrostat satellite (I
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. The parameters h
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are the components of

the vector sum of the angular momentum of all the momentum exchange devices with
respect to the body-"xed axis frame. The variables u

x
, u

y
, and u

z
are the angular velocities

of the gyrostat satellite in the body-axis frame. The parameters I
x
, I

y
, and I

z
are the

principal moments of inertia of the gyrostat satellite (including the wheels) in the body-axis
frame. Without loss of generality, throughout this paper, it is assumed that I

x
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y
'I

z
.

With these de"nitions, the theorem of moment of momentum can be expressed as

dG
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#x]G"T
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, ¹
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, and ¹

z
are the components of the vector of disturbance external torques in the

body-axis frame, and the symbol]stands for the cross-product of the vectors. From the
theorem of moment of momentum the general equations of the attitude motion become [17]
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The Euler angles t, h, and / are de"ned as in Figure 2, where Oxyz is the body-"xed
reference frame that is coinciding with the principal axis of the entire system; OX>Z is the
inertial reference frame. The sequence of rotation is tPhP/. The variables u

x
, u

y
, and

u
z
may also be expressed in terms of the Euler angles and the Euler angular velocities as
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dt
dt
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cos/, (4)
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sin h cos/!
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sin/, (5)
Figure 2. The body-"xed axis frame Oxyz.



Figure 3. Euler angles (t, h, /) and the Deprit variables (l, g, h, ¸, G, H) (PNM is a spherical triangle).
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u
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Following Deprit [18], the canonical variables ¸, G, H, l, g, and h (see Figure 3) are
introduced. In Figure 3, the big circle stands for the unit sphere. The reference plane
perpendicular to the axis OZ is in the co-ordinate plane OX>. The body plane
perpendicular to the axis Oz is in the co-ordinate plane Oxy. G is the magnitude of the
moment of the momentum of the entire system. The plane normal to G is de"ned as the
plane perpendicular to the vector of the moment of momentum of the entire system and
passing through point O. The projection of the vector of the moment of momentum of the
entire system on the axis OZ is H. The projection of the vector of the moment of momentum
of the entire system on the axis Oz is ¸. The angle between the body plane and the plane
normal to G is b. The angle between the reference plane and the plane normal to G is I. The
region PNM on the surface of the unit sphere is a spherical triangle. The angle h is the angle
between the axis OX and the line OP on the reference plane. The angle l is the angle between
the axis Ox and the line OM on the body plane. The angle g is the angle between the line OP
and the line OM on the plane normal to G. The detailed description of the Deprit's variables
can be found in reference [18]. According to Figure 3 and the knowledge of advanced
analytical mechanics, the angular velocities u

x
, u

y
, and u

z
can be expressed in terms of the

Deprit's canonical variables:
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where the angle b is a function of new momenta G and ¸ given by

cos b"
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G
. (10)

Di!erentiating equations (7)} (9) with respect to time t, respectively, the following equations
can be derived:
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It is easy to solve for the unknown variables (dl/dt, dG/dt, db/dt) among the quasi-linear
equations (11)} (13) as follows:
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Substituting equations (1)}(3) into equations (14)} (17), one obtains
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The remaining di!erential equations for the canonical variables g, H, and h are derived from
equations (4)}(6) (see Appendix A). In Figure 3, the angles (t!h), g, and (/!l ) are
obtained in terms of the angles I, h, and b from the usual spherical trigonometry applied to
the spherical triangle PNM. From the research of Tong and Tabarrok [10,11], the
following identities exist:

cos h"cos I cos b!sin I sin b cos g, (25)

sin h sin/" sin I sin g cos l# (cos I sin b#sin I cos b cos g) sin l, (26)

sin h cos/"! sin I sin g sin l#(cos I sin b#sin I cos b cos g) cos l, (27)

where I is also the angle between the momentum H and G, and cos I"H/G.

3. CHAOTIC MOTION USING MELNIKOV'S METHOD

Two cases will be studied separately: a quasi-rigid satellite model due to small perturbing
torques and a dissipative gyrostat under small perturbation torques.

3.1. CASE 1: QUASI-RIGID SATELLITE MODEL DUE TO SMALL PERTURBING TORQUES

In the case, one assumes that there is no momentum of the momentum exchange devices
within the satellite, i.e. h
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"0, and that the perturbed external torques are of the

following form:
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constants and X is the external excitation frequency.
The above-discussed problem could be degenerated to the case studied by Tong and

Tabarrok [10, 11] using Deprit's canonical variables if M
x1
"M

y1
"M

z1
"0. The

above-discussed problem could also be degenerated to the case investigated by Gray et al.
[13] using the spherical co-ordinate transformation if M

x2
"M

y2
"M

z2
"0 (i.e., for the

case of a quasi-rigid satellite model in going from minor-axis spin to a major-axis spin under
the in#uence of small damping and non-Hamiltonian, time-periodic perturbation) (see
Figure 4). The complex dynamics using Deprit's canonical variables in conjunction with
Figure 4. The con"guration of model spacecraft with internal moving masses. The two sub-bodies oscillate
symmetrically with respect to O along the x-axis. The positions of the moving masses relative to the spacecraft are
known periodic functions of time, i.e., g(t)"g

0
sin ()t).
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Melnikov's method will be examined based upon the development of Wiggins and Shaw
[12].

For the torque-free satellite, i.e. M
x
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"0, there are two equilibria for

equations (18)} (20). These two equilibria are
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According to the researches by Tong and Tabarrok [11], Gray et al. [13] and Hughes [17],
the solutions for the angular velocities of a torque-free rigid body along the heteroclinic
orbits which connect the unstable equilibrium points E
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are given by
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For the sake of convenience, the dynamical equations (18)} (20) could be rewritten as
follows:
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Following Wiggins and Shaw [12] the appropriate Melnikov integral may then be
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(l1 (t), 1̧ (t)) represents the solution for the heteroclinic orbits in the unperturbed system,
where
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Substituting equations (22)} (24) and (45)}(47) into the Melnikov integral (48), one obtains
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Therefore, the Melnikov's function could be simpli"ed into the following form via the
residue theorem of complex variable theory [19]:
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.

From formulae (53), the condition of existence of simple zeros for M(t
0
)"0 is

K
A

F
max
K)1, (54)
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where

F
max

"

3

4
(3B#JB2#32C2)S

1

2
#

B

32C2
(JB2#32C2!B)

Inequality (54) is the theoretic condition for the exhibition of chaotic dynamics near the
heteroclinic orbits for su$ciently small e. Figure 5(a)}5(c) show the bifurcation curve
(A/F

max
versus X) de"ned by equation (54) for the case

I
x
"1.0 kg m2, I

y
"0.8 kg m2, I

z
"0.4 kg m2, m

a
"0.5 kg,

k
x
"0.01 Nm s, k

y
"0.01N ms, k

z
"0.01Nms,

d
x
"350Nm, d

y
"350Nm, d

z
"350 Nm,

l
a
"0.5 m, g

0
"0.001m, b

c
"0.05.

Remark. In the case of quasi-rigid satellite model studied by Gray et al. [13], the
corresponding parameters can be identi"ed as (see Figure 4)

G
a
x
"a

y
"a

z
"m

a
g2
0
,

b
x
"b

y
"b

z
"4m

a
g
0
l
a
,

c
x
"c

y
"c

z
"m

a
g2
0
, G

I
x
"I

x rigid
,

I
y
"I

y rigid
#2m

a
l2
a
,

I
z
"I

zrigid
#2m

a
l2
a
,

G
c
x
"

(I2
z
!I2

y
)

I
z
I
y
A

I
y

m
a
l2
a
B ,

c
y
"

I
x

I
z
A

I
y

m
a
l2
a
B ,

c
z
"!

I
x

I
y
A

I
y

m
a
l2
a
B , G

b
x
"b

c
I2
y
I
x A

I
y

m
a
l2
a
B ,

b
y
"b

c
I
y A

I
y

m
a
l2
a
B ,

b
z
"b

c
I2
y

I
z A

I
y

m
a
l2
a
B ,

where m
a
is the mass of one of the sub-bodies inside the satellites, g

0
is the amplitude of the

oscillation of the sub-bodies, l
a

is the characteristic position of the sub-body, and b
c

is
a positive-valued control gain to be speci"ed. In reference [13], the small parameter is
de"ned as e"m

a
l2
a
/I

y
. It is noted that the physical parameters I

x
, I

y
, and I

z
(the moment of

inertia) consist of the contributions of the rigid part (I
xrigid

, I
yrigid

, and I
zrigid

) and the
sub-bodies respectively.

Figure 5(a) shows the bifurcation curve for a satellite with sub-bodies. The initial
magnitude of the angular momentum is G

0
"18 Nms. Its maximum frequency that will

excite the chaotic dynamics is approximately 7.7 rad/s. Figure 5(b) shows the bifurcation
curve for a satellite with sub-bodies. The initial magnitude of the angular momentum is
G

0
"20 Nms. Its maximum frequency that will excite the chaotic dynamics is

approximately 5.4 rad/s. Figure 5(c) shows the bifurcation curve for a satellite with
sub-bodies. The initial magnitude of the angular momentum is G

0
"21 Nms. Its maximum

frequency that will excite the chaotic dynamics is approximately 3.7 rad/s. From Figure
5(a)}(c), one can conclude that for the quasi-rigid satellite model, the combined physical
parameters (A/F

max
in equation (54)) vary according to the external excitation frequencies.



Figure 5(a). The bifurcation curve for a satellite with sub-bodies when G
0
"18N ms.

Figure 5(b). The bifurcation curve for a satellite with sub-bodies when G
0
"20 Nm s.
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The range of the excitation frequencies that can excite the occurring of the chaotic dynamics
will decrease as the initial moment of momentum of the entire system increases.

3.2. CASE 2: GYROSTAT UNDER SMALL PERTURBATION TORQUES BEING DISSIPATIVE

For the torque-free rotation of the gyrostat there are two saddle points at l"0 and l"n
in case h

x
"h

y
"0, and h

z
O0 [8]. Analyzing the equations (42)}(44), in case



Figure 5(c). The bifurcation curve for a satellite with sub-bodies when G
0
"21N ms.
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M
x
"M

y
"M

z
"0, one obtains the solution (u6

x
(t), uN

y
(t), uN

z
(t)) or ( 1̧ (t), l1 (t)) along the

heteroclinic orbits. Here one considers the attitude motion of a dissipative gyrostat under
small perturbation torques. In this case, the Melnikov function can be derived as

M(t
0
)"P

`=

~=

LH
a

L¸
( lM (t), 1̧ (t)) f

L
( lM (t), 1̧ (t), t#t

0
) dt

#P
`=

~=

LH
a

Ll
(lM (t), 1̧ (t)) f

l
(lM (t), 1̧ (t), t#t

0
) dt

#P
`=

~=

LH
a

LG
(lM (t), 1̧ (t)) f

G
(lM (t), 1̧ (t), t#t

0
) dt

!

LH
a

LG A0,
I
y

I
y
!I

z

h
zB P

`=

~=

f
G
( lM (t), 1̧ (t), t#t

0
) dt

"P
`=

~=

M
x
( lM (t), 1̧ (t), t#t

0
)Cu6 x (t)!A

G
0
!h

y
I
y
B

I
x
uN

x
(t)#h

x
G

0
D dt

#P
`=

~=

M
y
(lM (t), 1̧ (t), t#t

0
)Cu6 y (t)!A

G
0
!h

y
I
y
B

I
y
uN

y
(t)#h

y
G

0
D dt (55)

#P
`=

~=

M
z
( l1 (t), 1̧ (t), t#t

0
)Cu6 z(t)!A

G
0
!h

y
I
y
B

I
z
uN

z
(t)#h

z
G

0
D dt,

where LH
a
/L¸ , LH

a
/Ll, and LH

a
/LG are de"ned in equations (22)}(24).
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According to Or [16] and Masaitis [20], the solutions along the heteroclinic orbits when
h
x
"0, h

y
"0, and h

z
O0 are given as follows:

u6
x
(t)"

A
x
sech (j(t!t

b
))

tanh2 (j(t!t
b
))#k

, (56)

u6
y
(t)"

A
y
tanh (j(t!t

b
)) sech (j(t!t

b
))

tanh2 (j(t!t
b
))#k

, (57)

u6
z
(t)"

r
1
tanh2 (j(t!t

b
))#kr

3
tanh2 (j(t!t

b
))#k

, (58)

where the initial time t
b
starts at the saddle point.

a
1
"

I
z
(I

y
!I

z
)

I
x
(I

x
!I

y
)
, b

1
"!

2h
z
I
z

I
x
(I

x
!I

y
)
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"
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!2¹I

y
!h2

z
I
x

(I
x
!I

y
)

,

a
2
"

I
z
(I

x
!I

z
)

I
y
(I

y
!I

x
)
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2
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2h
z
I
z

I
y
(I

y
!I

x
)
, c

2
"

G2
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!2¹I

x
!h2

z
I
y
(I

y
!I

x
)

,

I
x
(uN

x
(t))2#I

y
(uN

y
(t))2#I

z
(uN

z
(t))2"2¹,

(I
x
uN

x
(t))2#(I

y
uN

y
(t))2#(I

z
uN

z
(t)#h

z
)2"G2

0
,

r
1,2

"

!b
1
$Jb2

1
!4a

1
c
1

2a
1

(if b2
1
!4a

1
c
1
'0),

r
3,4

"

!b
2
$Jb2

2
!4a

2
c
2

2a
2

(if b2
2
!4a

2
c
2
'0),

k"
r
2
!r

1
r
3
!r

2

, j"
(I

x
!I

y
)

2I
z

Ja
1
a
2
(r
3
!r

2
) (r

1
!r

2
) ,

A
x
"k Ja

1
(r
3
!r

1
) (r

3
!r

2
), A

y
"Jka

2
(r
1
!r

3
) (r

3
!r

2
) .

One can derive the condition of existence for the heteroclinic solutions (56)}(58) to the
equations (1)} (3) under no external torques as follows (see Appendix B):

G2
0
"h2

z
#2¹I

z
$2 J2h2

z
I
z
¹ .

Further, one assumes that the external disturbance is as follows:

¹
x
"eM

x
"e(!k

x
u

x
#d

x
sin (Xt)), (59)

¹
y
"eM

y
"e(!k

y
u

y
#d

y
sin (Xt)), (60)

¹
z
"eM

z
"e(!k

z
u

z
#d

z
sin (Xt)), (61)
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where k
i
(i"x, y) are positive constants and d

i
(i"x, y, z) are constants; hereafter one

assumes that k
z
"d

z
"0.

Using the transformations (7)} (9), the Melnikov function (55) can be changed into the
following form:

M(t
0
)"P

`=

~=

[!k
x
u6

x
(t)#d

x
sin (X(t#t

0
))] A

1

I
x

!

1

I
y
B I

x
uN

x
(t) dt

(62)
"J

1
#J

2
sin (Xt

0
),

where

J
1
"P

`=

~=

acosh (2jt)#b
(sinh2(jt)#k cosh2(jt))2

dt

"

2aA
n
2
!h

aB sin (2h
a
)#(a cos (2h

a
)#b)

2j (k#1)2 cos2 h
a
sin2 h

a

#

2aA
n
2
!h

bB sin (2h
b
)#(a cos (2h

b
)#b)

2j(k#1)2 cos2 h
b
sin2 h

b

(63)

#

A
n
2
!h

aB (a cos (2h
a
)#b) (cos2 h

a
!sin2h

a
)

2j(k#1)2 cos3 h
a
sin3 h

a

#

A
n
2
!h

bB (a cos (2h
b
)#b) (cos2 h

b
!sin2h

b
)

2j(k#1)2 cos3 h
b
sin3 h

b

.

Here,

a"!

1

2
k
x
I
x
A2

x A
1

I
x

!

1

I
y
B, b"!

1

2
k
x
I
x
A2

x A
1

I
x

!

1

I
y
B ,

where ih
a
#ih

b
"in (i is the imaginary unit) and 0(h

a
(n and 0(h

b
(n; ih

a
and ih

b
are

the imaginary roots of the following equations:

sinh (ih
a
)!iJk cosh (ih

a
)"0,

sinh (ih
b
)#iJk cosh (ih

b
)"0

and

J
2
"P

`=

~=

a@cosh (jt) cos (Xt)

sinh2 (jt)#k cosh2 (jt)
dt

"

a@n
j (k#1) (1#cosh (nX/j)) C

cosh ((X/j)/h
a
)

sin h
a

#

cosh ((X/j)/h
b
)

sin h
b

D . (64)
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Here, a@"(1/I
x
!1/I

y
) d

x
I
x
A

x
(see Appendix C for details).

According to the Melnikov function (62), it can be veri"ed that if

K
J
1

J
2
K)1, (65)

then there is a t
0

such that

M (t
0
)"0 and

LM

Lt
(t) K

t/t0

O0. (66)

Thus, there exist transversal intersections of stable and unstable manifolds for the perturbed
gyrostats. Figure 6(a)}6(c) show the bifurcation curves (J

1
/J

2
(de"ned by equations (65))

versus X) for the following parameters:

I
x
"1.0 kg m2, I

y
"0.8 kgm2 I

z
"0.4 kg m2, G

0
"18Nms,

k
x
"0.08Nms, k

z
"0.0, d

x
"!100Nm, d

z
"0.0, ¹"80Nm.

Figure 6(a) shows the bifurcation curve for a gyrostat under the small external disturbance
torques when the magnitude of the angular momentum of the wheel h

z
"9 N ms. The

maximum frequency that will excite the chaotic dynamics is approximately 16.7 rad/s.
Figure 6(b) shows the bifurcation curve for a gyrostat under the small external disturbance
torques when the magnitude of the angular momentum of the wheel h

z
"10 Nms. The

maximum frequency that will excite the chaotic dynamics is approximately 13.7 rad/s.
Figure 6(c) shows the bifurcation curve for a gyrostat under the small external disturbance
torques when the magnitude of the angular momentum of the wheel h

z
"11Nm s. The

maximum frequency that will excite the chaotic dynamics is approximately 9.5 rad/s. The
Figure 6(a). The bifurcation curve for a perturbed gyrostat when h
z
"9 Nm s.



Figure 6(b). The bifurcation curve for a perturbed gyrostat when h
z
"10 Nms.

Figure 6(c). The bifurcation curve for a perturbed gyrostat when h
z
"11 Nm s.
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range of the excitation frequencies that can excite the occurring of the chaotic dynamics will
decrease as the moment of the momentum of the wheel increases.

One chooses the external exciting frequency as X"10 rad/s in order to account for the
steady state behavior of the attitude motion equations (1)} (3) by using a fourth order
Runge}Kutta scheme. Figure 7a and 7b is the two-dimensional phase portraits showing the
chaotic motion about the homoclinic solutions. The rest of the corresponding parameters



Figure 7(a). A projection (u
1

versus u
3
) of three-dimensional phase portrait.

Figure 7(b). A projection (u
1

versus u
2
) of three-dimensional phase portrait.
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are given as follows:
k
y
"0.08Nms, d

y
"!100 N m , e"0.05, h

z
"10 N ms.

From the phase curves (Figure 7a and 7b) and the printed-out data, one knows that the
perturbed gyrostats exhibit non-periodic solutions that possess many characteristics of the
randomness.
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4. CONCLUSIONS

In this paper, the six-dimensional ordinary di!erential equations governing the attitude
motion of the gyrostats in terms of Deprit canonical variables are derived in the form of
Hamiltonian equations directly from the ordinary di!erential equations of the Euler's
angular momentum and from Euler angles' attitude kinematic equations, by using the
Deprit's transformations (see Appendix A). With the help of Mathematica software, the
conditions of physical parameters for the existence of heteroclinic solutions to the attitude
motion of gyrostats are formulated (see Appendix B). By using the Melnikov integral, one
obtains the theoretical criteria of the chaotic attitude motion of two model con"gurations,
which are the quasi-rigid, energy-dissipating satellite model subject to non-Hamiltonian,
time-periodic and small perturbation torques, and a gyrostat model under small
perturbation torques. For the quasi-rigid satellite the bifurcation curves are computed,
which describe the combined physical parameters (A/F

max
in equation (54)) varying

according to the external excitation frequencies. The range of the excitation frequencies that
can excite the occurring of the chaotic dynamics will decrease as the initial moment of
momentum of the entire system increases. For the gyrostat model, the bifurcation curves are
also computed, which depict the combined physical parameters (J

1
/J

2
in equation (65))

varying according to the external excitation frequencies. The range of the excitation
frequencies that can excite the occurring of the chaotic dynamics will decrease as the
moment of momentum of the wheel increases. From the fourth-order Runge}Kutta
integration method, the complex attitude solutions of the perturbed gyrostats are solved to
show that the perturbed gyrostat possesses many random characteristics of a non-periodic
solution which are theoretically proved to be chaotic by using the Melnikov technique.

APPENDIX A

The di!erential equations about canonical variables g, H, and h can be derived from
equations (4)} (6). From equations (4)}(6) one obtains

d/

dt
"u

z
!

(u
x
sin h sin /#u

y
sin h cos/) cos h

sin2h
, (A.1)

dh
dt

"

(u
x
sin h cos/!u

y
sin h sin/)

sin h
, (A.2)

dt
dt

"

(u
x
sin h sin/#u

y
sin h cos/)

sin2h
, (A.3)

Using the following identities from the spherical triangle PNM (see Figure 3), one has

cos h"cos I cos b!sin I sin b cos g, (A.4)

sin h cos (/!l )"cos I sin b#sin I cos b cos g, (A.5)

sin h sin (/!l )"sin I sin g, (A.6)

sin h cos(t!h)"sin I cos b#cos I sin b cos g, (A.7)

sin h sin (t!h)"sin b sin g. (A.8)
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From the transformation (7)} (9), one obtains

u
x
"

G sin b sin l!h
x

I
x

, (A.9)

u
y
"

G sin b cos l!h
y

I
y

, (A.10)

u
z
"

G cos b!h
z

I
z

. (A.11)

One sets

S
1
(h, /, l)" sin h cos (/!l), (A.12)

F
1
(I, b, g)"cos I sin b#sin I cos b cos g, (A.13)

S
2
(h, /, l )"sin h sin (/!l ), (A.14)

F
2
(I, b, g)"sin I sin g, (A.15)

S
3
(h, t, h )"sin h cos (t!h ), (A.16)

F
3
(I, b, g)"sin I cos b#cos I sin b cos g. (A.17)

According to the identities (A.4)}(A.7), one knows that

S
1
(h,/, l )"F

1
(I, b, g), (A.18)

S
2
(h,/, l )"F

2
(I, b, g), (A.19)

S
3
(h,t, h )"F

3
(I, b, g), (A.20)

Taking the time derivative of equations (A.18)}(A.20), one obtains

LS
1

Lh
dh
dt

#

LS
1

L/

d/

dt
#

LS
1

Ll

dl

dt
"

LF
1

LI

dI

dt
#

LF
1

Lg

dg

dt
#

LF
1

Lb

db

dt
, (A.21)

LS
2

Lh
dh
dt

#

LS
2

L/

d/

dt
#

LS
2

Ll

dl

dt
"

LF
2

LI

dI

dt
#

LF
2

Lg

dg

dt
#

LF
2

Lb

db

dt
, (A.22)

LS
3

Lh
dh
dt

#

LS
3

Lt
dt
dt

#

LS
3

Lh

dh

dt
"

LF
3

LI

dI

dt
#

LF
3

Lg

dg

dt
#

LF
3

Lb

db

dt
, (A.23)
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where

G
LS

1
Lh

"

cos h
sin h

( cos I sin b#sin I cos b cos g),

LS
1

L/
"!sin I sin g,

LS
1

Ll
"sin I sin g, G

LS
2

Lh
"

cos h
sin h

sin I sin g,

LS
2

L/
"cos I sin b#sin I cos b cos g,

LS
2

Ll
"!(cos I sin b#sin I cos b cos g),

G
LS

3
Lh

"

cos h
sin h

( sin I cos b#cos I sin b cos g),

LS
3

Lt
"!sin b sin g,

LS
3

Lh
"sin b sin g, G

LF
1

LI
"!sin I sin b#cos I cos b cos g,

LF
1

Lg
"!sin I cos b sin g,

LF
1

Lb
"cos I cos b!sin I sin b cos g,

G
LF

2
LI

" cos I sin g,

LF
2

Lg
"sin I cos g,

LF
2

Lb
"0, G

LF
3

LI
" cos I cos b!sin I sin b cos g,

LF
3

Lg
"!cos I sin b sin g,

LF
3

Lb
"!sin I sin b#cos I cos b cos g.

Di!erentiating the following equations:

G cos b"¸, G cos I"H

with respect to the time t, one obtains

dG

dt
cos b!G

db

dt
sin b"

d¸

dt
, (A.24)

dG

dt
cos I!G

dI

dt
sin I"

dH

dt
, (A.25)

where dl/dt, d¸/dt, and dG/dt are de"ned in equations (18), (19), and (20) respectively. The
quantities dh/dt, d//dt, and dt/dt are de"ned in equations (A.1), (A.2) and (A.3) respectively.
Using the identities (A.5)}(A.8) and their respective partial derivatives, one can "nd out the
quasi-linear equations (A.21)} (A.25) with respect to the unknowns db/dt, dI/dt, dH/dt,
dh/dt, and dg/dt.
One may obtain

dH

dt
"¹

x
[( sin I sin g) cos l#(cos I sin b#sin I cos b cos g) sin l]

#¹
y
[!(sin I sin g) sin l#(cos I sin b#sin I cos b cos g) cos l] (A.26)

#¹
z
[cos I cos b!sin I sin b cos g],
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dg

dt
"

(G sin b sin l!h
x
) sin l

I
x
sin b

#

(G sin b cos l!h
y
) cos l

I
y
sin b

#¹
x

!(sin I cos b#cos I sin b cos g) cos l#(cos I sin b cos b sin g) sin l

G sin I sin b
(A.27)

#¹
y

(sin I cos b#cos I sin b cos g) sin l#(cos I sin b cos b sin g) cos l

G sin I sin b

#¹
z

(!cos I sin b sin g)

G sin I
,

dh

dt
"¹

x

cos g cos l!cos b sin g sin l

G sin I

!¹
y

cos g sin l#cos b sin g cos l

G sin I
(A.28)

#¹
z

sin b sin g

G sin I
.

Equations (18)}(20) and (A.26)}(A.28) are the six-dimensional ordinary di!erential
equations governing the attitude motion of the satellite using Deprit variables. These
six-dimensional ordinary di!erential equations are of Hamiltonian form. The Hamiltonian
function is written in equation (21).

APPENDIX B

When h
x
"h

y
"0, h

z
O0, there are two constants of motion for the ordinary di!erential

equations (1)} (3) as follows:

I
x
u2

x
#I

y
u2

y
#I

z
u2

z
"2¹"constant, (B.1)

(I
x
u

x
)2#(I

y
u

y
)2#(I

z
u

z
#h

z
)2"G2

0
"constant. (B.2)

From equations (B.1) and (B.2), one can obtain

u2
x
"a

1
u2

z
#b

1
u

z
#c

1
"a

1
(u

z
!r

1
) (u

z
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), (B.3)
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u
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(u
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3
) (u

z
!r

4
), (B.4)

where a
i
, b

i
, c

i
, and r

i
(i"1, 2) are de"ned in Case 2 (see equations (56)}(58)). Substituting

equations (B.3) and (B.4) into equation (3), one obtains

du
z

dt
"$

(I
x
!I

y
)

I
z

Ja
1
a
2
(u

z
!r

1
) (u

z
!r

2
) (u

z
!r

3
) (u

z
!r

4
). (B.5)

The conditions of existence for the heteroclinic solutions (56)} (58) to equations (1)} (3) are

r
1
'r

2
"r

4
'r

3
. (B.6)
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From the equation r
2
"r

4
, one gets

!b
1
!Jb2

1
!4a

1
c
1

2a
1

"

!b
2
!Jb2

2
!4a

2
c
2

2a
2

. (B.7)

Substituting a
i
, b

i
, and c

i
(i"1, 2) into this equation and using the software Mathematica

[15], one "nds

16 (I
x
!I

z
)2 (I

y
!I

z
)2I6

z
[G4

0
!2(h2

z
#2¹I

z
)G2

0
#(h2

z
!2¹I

z
)2]

I4
x
(I

x
!I

y
)6I4

y

"0

Because of the assumption I
x
'I

y
'I

z
, the condition of existence for the heteroclinic

solutions (56)}(58) to equations (1)}(3) can be further derived as follows:

G2
0
"h2

z
#2¹I

z
$2J2h2

z
I
z
¹. (B.8)

APPENDIX C

Using the idea suggested by Or [16], in order to apply the residue theory to the Melnikov
integrals, one constructs a closed circuit C enclosing the two poles z"ih

a
and z"ih

b
. One

chooses the circuit C as a rectangular strip in the upper-half complex plane. It runs
counter-clockwise from z"!R to z"R, to z"R#in, then z"!R#in, and then back
to z"!R. By applying RPR and applying the residue theorem one obtains

J
1
"P

`=

~=

(a cosh (2jt)#b)

(sinh2 (jt)#k cosh2 (jt))2
dt"A

1

niB Q
C

f (z)

h(z)
dz, (C.1)

where

f (z)"A
ni

2
!zB (a cosh (2z)#b), h(z)"j (sinh2z#k cosh2 z)2.

Expanding f (z) and h(z) into Taylor series in the neighbourhood of z
0
, one obtains

f (z)"f
0
(z

0
)#f

1
(z

0
) (z!z

0
)#1

2
f
2
(z

0
) (z!z

0
)2#1

6
f
3
(z

0
) (z!z

0
)3#2,

h (z)"h
0
(z

0
)#h

1
(z

0
) (z!z

0
)#1

2
h
2
(z

0
) (z!z

0
)2#1

6
h
3
(z

0
) (z!z

0
)3#2,

where h
0
"h(z

0
)"0, h

1
(z

0
)"(dh/dz) (z

0
)"0,

h
2
(z

0
)"

d2h

dz2
(z

0
)"8j(k#1)2 sinh2(z

0
)cosh2 (z

0
),

h
3
(z

0
)"

d3h

dz3
(z

0
)"24j(k#1)2 (sinh2(z

0
)#cosh2 (z

0
)) sinh (z

0
) cosh (z

0
),

f
0
(z

0
)"A

ni

2
!z

0B (a cosh (2z
0
)#b),
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f
1
(z

0
)"

d f

dz
(z

0
)"A

ni

2
!z

0B (2a cosh (2z
0
))!(acosh (2z

0
)#b).

Therefore,

J
1
"

2ni

ni Climz?a

d

dzA(z!a)2
f (z)

h (z)B#lim
z?b

d

dzA(z!b)2
f (z)

h(z)BD
(C.2)

"4A
f
1
(a)

h
2
(a)

!

f
0
(a)h

3
(a)

3[h
2
(a)]2B#4 A

f
1
(b)

h
2
(b)

!

f
0
(b)h

3
(b)

3[h
2
(b)]2B ,

where a"ih
a
, b"ih

b
.

From equation (C.2), it is easy to derive the analytical form of the integral J
1

in equation
(63). Similarly

J
2
"P

`=

~=

a cosh(jt) cos (Xt)

(sinh2 (jt)#k cosh2 (jt))
dt

"P
`=

~=

a@ cosh z cos (X (z/j))

j (sinh2 z#k cosh2 z)
dz

"

a@
(1#cosh (X (n/j))) Q

C

cosh z cos (X (z/j))

j (sinh2z#k cosh2z)
dz

"

a@2ni

(1#cosh (X (n/j)))
lim
z?a A(z!a)

cosh z cos (X (z/j))

j (sinh2 z#k cosh2 z)B
#

a@2ni

(1#cosh (X (n/j)))
lim
z?b A(z!b)

cosh z cos (X (z/j))

j (sinh2 z#k cosh2 z)B
"

a@ni

j(k#1) (1#cosh (X (n/j)))

cos (X (a/j))

sinh a
#

cos (X (b/j))

sinh b
. (C.3)

From equation (C.3), integral J
2

in equation (64) can be derived easily.
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